Kernel density estimation on Riemannian manifolds

نویسنده

  • Philippe Lebon
چکیده

The estimation of the underlying probability density of n i.i.d. random objects on a compact Riemannian manifold without boundary is considered. The proposed methodology adapts the technique of kernel density estimation on Euclidean sample spaces to this non-Euclidean setting. Under sufficient regularity assumptions on the underlying density, L 2 convergence rates are obtained. Index Terms — Nonparametric density estimation, Kernel density estimation, Riemannian manifolds, L2 convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Kernel Density Estimation on the Siegel Space with an Application to Radar Processing

This paper studies probability density estimation on the Siegel space. The Siegel space is a generalization of the hyperbolic space. Its Riemannian metric provides an interesting structure to the Toeplitz block Toeplitz matrices that appear in the covariance estimation of radar signals. The main techniques of probability density estimation on Riemannian manifolds are reviewed. For computational...

متن کامل

Probability Density Estimation on the Hyperbolic Space Applied to Radar Processing

Main techniques of probability density estimation on Riemannian manifolds are reviewed in the hyperbolic case. For computational reasons we chose to focus on the kernel density estimation and we provide the expression of Pelletier estimator on hyperbolic space. The method is applied to density estimation of re ection coe cients from radar observations.

متن کامل

Nonparametric regression estimation on closed Riemannian manifolds

The nonparametric estimation of the regression function of a real-valued random variable Y on a random object X valued in a closed Riemannian manifold M is considered. A regression estimator which generalizes kernel regression estimators on Euclidean sample spaces is introduced. Under classical assumptions on the kernel and the bandwidth sequence, the asymptotic bias and variance are obtained, ...

متن کامل

Locally adaptive density estimation on Riemannian manifolds

In this paper, we consider kernel type estimator with variable bandwidth when the random variables belong in a Riemannian manifolds. We study asymptotic properties such as the consistency and the asymptotic distribution. A simulation study is also considered to evaluate the performance of the proposal. Finally, to illustrate the potential applications of the proposed estimator, we analyse two r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006